
that a temporary power boost can be provided to combat fades on

selected links while requiring only a modest increase in satellite

solar array power. The array power not needed during clear-sky

operation is used to charge batteries, which supply the energy

needed to transmit the added power during fades.

Through power control, the maximum amount of rain attenuation

that can be compensated is equal to the difference between the

maximum output of the Earth station or satellite power amplifier and

the output required under clear-sky conditions. The effect of power

control on availability, assuming that control is perfect, is the

same as having this power margin at all times. A perfect power

control system varies the power exactly in proportion to the rain

attenuation. Errors in the power control result in added outages,

effectively decreasing this margin. Maseng and Baaken (1981) have

studied this effective margin reduction due to power control delay.

A drawback of power control is a potential increase in

intersystem interference. A power boost intended to overcome rain

attenuation along the direct Earth-space path will produce an

increase in power on interfering paths as well. If the same rain

fade does not exist on these paths, the interference power received

by interferees, such as other terrestrial stations, will increase.

Due to the inhomogeniety of heavy rain, attenuation on interfering

paths at large angles from the direct earth-space path will often be

much less than the attenuation on that path. Terrestrial system

interference caused by the earth station, although tolerable under

clear-sky conditions, may therefore become intolerable in the

presence of rain when uplink power control is used. Downlink power

control will likewise increase the potential for interference with

earth stations using adjacent satellites. A downlink power boost

for the benefit of a receiving station experiencing a rain fade will

be seen as an increase in interference by vulnerable stations that

are not experiencing fades.
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7.4.3.1.1 Uplink Power Control

A frequency-division multiple-access (FDMA) satellite
communication system trying to operate with large spatial and time

variations in rain fades will experience significant nonlinear

distortion when fades are mitigated by the use of large power
margins alone. Nonlinear distortion, which occurs when the
satellite transmitter is operated near saturation, includes AM-to-PM

conversion and generation of intermodulation products.

By continually adjusting the uplink power from each ground
station in accordance with uplink fade conditions, variations in the

operating point of the satellite TWTA can be minimized, thereby
minimizing nonlinear distortion. However, this does not completely

solve the problem because downlink rain fades must also be
considered. Lyons (1976) showed that if the uplink power control

algorithm accounts not only for uplink fades but also for downlink
fades, good performance can be achieved in the presence of fading on

both links by using uplink power control alone. Athough individual
signal levels at the satellite receiver will vary widely in this

situation, the TWTA operating point will still remain relatively
fixed so long as there is a sufficiently large number of users, all

having controlled access to the satellite. So if deep fades occur
on only a few of the uplink and downlink paths, variations in the

received downlink signal levels will be relatively small, thus
requiring smaller fade margins.

However, uplink power control of such systems requires that each

station accessing the satellite possess knowledge not only of its
uplink fade characteristics, but also of the downlink fade

characteristics for all stations to which it is transmitting. Power

control of all transmitting stations can be achieved from a single
location at the cost of control delays, which result in relatively
slow fade mitigation. If instead, we have distributed control in

the sense that each station controls its own transmitted power,
delays are minimized. However, performance may suffer because the

total received uplink power at the satellite can no longer be
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maintained approximately constant under widely fluctuating

propagation conditions. Furthermore, with distributed control, fade

information must be exchanged continually among all participating

stations to make the system work.

These arguments indicate that if the uplink power control

algorithm does not take into account the downlink fade

characteristics, then power control can likely be applied only to

single-service, single-user links. For such links, there are two

types of uplink power control that can be used (Ippolito-1986). The

first is a closed-loop system that adjusts uplink power in

accordance with the satellite received signal level returned to the

transmitting station via telemetry. The second is an open-loop

system that adjusts uplink power in accordance with either the

downlink signal (or beacon) level, or the attenuation calculated

from ground-based radiometer or radar measurements. Figures 7.4-15

and 7.4-16 illustrate closed-loop and open-loop uplink power control

for single-carrier links.

7.4.3.1.2 Downlink Power Control

More and more satellite communication systems are going to on­

board signal processing, not only to improve bit error rate

performance (in the case of digital modulation), but also to improve

terminal interconnectivity and to make downlink performance

independent of the uplink. On-board processing simplifies power

control for rain fade mitigation (especially in FDMA systems)

because the uplink power control algorithm no longer needs to take

into account downlink fade conditions. Therefore, uplink and

downlink power control can be done independently, which alleviates

many problems associated with the use of FDMA during rain fades.

This assumes that on-board processing includes demodulation to

baseband, followed by remodulation onto a downlink carrier. The

following discussion assumes that downlink power control can be

accomplished essentially independent of the uplink regardless of

whether or not on-board processing is being used.
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The satellite transmitter usually has only one or two switchable

output power levels, so downlink power control for rain fade

mitigation is less flexible than uplink power control. One example

is ACTS (Holmes and Beck-1984), which operates at 30/20 MHz and has

a transmitter output power of either 8 or 40 watts. The high-power

mode therefore provides 7 dB additional margin against rain fades.

Because the entire antenna footprint receives the added power in the

high-power mode, those stations not experiencing rain attenuation

will receive more power than they require. Downlink power control

is therefore not efficient in directing the added power to the

staions needing it.

This problem with downlink power control is somewhat alleviated

by the use of switchable spot beams on the satellite. The reason

for this is that the antenna footprints are relatively small,

thereby allowing added downlink power to be directed only to those

terminals that require it. In fact, switching to spot beams is, in

itself, an effective technique for mitigating rain fades, even when

satellite transmitter power is not controlled. The use of downlink

power control together with switchable antenna beams might better be

called EIRP control rather than power control.

7.4.3.2 Adaptive Forward Error Correction. In Time Division

MUltiple Access (TDMA) systems, each earth station is periodically

assigned a time interval during which it alone may access the entire

satellite bandwidth. The time between accesses by a given station

is called the TDMA frame period, and each station is assigned a

fixed fraction of the frame. This fraction is proporitonal to the

traffic the station is carrying, or to its average bit rate. By

leaving a portion of the frame period unassigned, those stations

experiencing rain fades can be temporarily assigned a larger

fraction of the frame for fade mitigation. One way to exploit this

additional time resource is to apply forward error correction (FEC).
The same number of information bits is transmitted each frame period

as before. However FEC reduces the required received signal level,

thereby at least partially offsetting the loss in received power
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experienced during rain fades. Alternatively, the additional
allotted time allows a reduction in data rate during rain fades.

Data rate control will be discussed further in paragraph 7.4.3.4.

This scheme is adaptive in the sense that FEC is applied only

when the rain attenuation has exceeded a selected threshold. When

FEC is used, the symbol timing hardware still operates at the same
fixed rate. In principle, FEC can be implemented in software, which

may be advantageous in some systems.

There is a limit to the mitigation that coding can provide

(Bronstein-1982). This is because a minimum symbol energy must be

maintained to ensure proper recovery of symbol timing in the
receiver. Therefore, because the symbol rate is fixed, a minimum

received signal power level must be maintained. The fade margin
achieved with FEC must be traded off against the reduction in total

system capacity that occurs. As propagation conditions worsen, the
fraction of the frame duration needed for fade mitigation must

increase, thereby reducing the fraction available for use during

clear weather.

FEC can be used to mitigate either uplink or downlink fades. A

station affected by uplink fades would encode its entire burst ­
lengthening its burst period by its allotted reserve time. Each
station receiving that station's burst must decode the data in that

burst. In contrast, a receiving station affected by downlink fading
will receive all its data in coded form. Transmitting stations must

encode that portion of the data that is transmitted to the affected

station. It is apparent that a central control station must
dynamically assign the extra time to the stations that require it.
Furthermore, all stations in the network must know which stations

require coding.

A satellite using on-board signal processing essentially
decouples the downlink from the uplink, which allows the reserve

time to be used more efficiently. Only those transmitting stations
experiencing uplink fades then need to encode their data. The
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satellite would not only demodulate the uplink signal, but would

also decode those uplinks affected by fading. The satellite would

then encode for downlink transmission only those signals affected by

downlink fades. The reserve time used by faded uplinks is, in

effect, freed up to be used by faded downlinks.

Acampora (1979, 1981) has studied the performance of a system

using FEC coding to mitigate downlink fades. The hypotetical TDMA

system studied operated in the 12/14 GHz bands, using a bent-pipe

transponder. The traffic model used assigned traffic between the

100 most populous u.s. cities in proportion to their population

ranking. The Earth stations were given a built-in fade margin, and

the reduction in this margin made possible by time resource sharing

was found, using a convolutional FEC code that gave a 10 dB power

saving. A typical result of this analysis showed that reserving six

percent of the frame period as a shared resource provided an outage

of 30 minutes per year (.0057% of the time) with 9 dB less rain

margin than would otherwise be needed.

Gains of up to 8 dB have been reported (Mazur, et. al.-1983) for

14/11 GHz TDMA networks with 32 ground terminals. Five of the 8 dB

comes from the coding gain provided by a rate 1/2 code. The other 3

dB comes from a QPSK/PBSK switch capability.

7.4.3.3 Frequency Diversity. A straightforward method of improving

the reliability of a millimeter-wave satellite system is to provide

the capability for Earth stations to switch to a lower frequency

band (say C-band) when rain fades occur at the normal operating

band. This would require a satellite with a dual-band payload and a

dual-frequency Earth station capability, but the improvement in

overall system reliability may be worth the added cost. The

bandwidth required in the lower, high-reliability, frequency band

need be only a fraction of the total bandwidth used, since it needs

to accommodate only the traffic of those stations undergoing rain

fades. The probability of rain outage on a particular link with

such a frequency diversity system is equal to the sum of the

probabilities of two mutually exclusive events: (1) that the
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reserve band is fully occupied by other links when a rain fade
occurs, and (2) that a link is assigned to the reserve band, but the
rain rate is so great that the reserve band suffers an outage while

the link is using it. If 4/6 GHz is used for the reserve band, the

probability of the second event can be considered nil. If the

reserve band is wide enough for N links, the probability of the
first event is the probability of N+I simultaneous fades. The

bandwidth required in the reserve band is therefore established by

the simultaneous fade probability over all the Earth stations in the

system. The dependence of system performance on simultaneous fade
probability is common to all resource-sharing schemes. Because of
this, it will be discussed separately later (paragraph 7.4.4).

7.4.3.4 Data Rate Control. If the satellite receiver monitors the

uplink received signal level and feeds this information back to the

transmitter, then various properties of the transmitted signal can

be varied to mitigate uplink rain fades. Transmitter power control
(paragraph 7.4.3.1) provides an example. However, we can vary the

data rate rather than the transmitted power to accomplish the same
results. This is because in digital data transmission the measure
of system performance is the bit error rate, which ideally depends

only on the received bit energy-to-noise density ratio. The bit
energy in turn is equal to the received signal power divided by the

data rate. So in principle, lowering the data rate by a factor of
two, for example, has the same effect on error rate performance as
raising the transmitted power 3dB.

It has been shown (Cavers-1972) that data rate control can
completely eliminate the effect of fading if the feedback from the

receiver is assumed to be ideal (no control delay). Even when
control delay is included, however, data rate control can often be

more effective than diversity reception, at a cost of bandwidth
expansion to accommodate transmission of control information.

As we have seen in paragraph 7.4.3.2, a possible fade mitigation
technique for TDMA communication is to leave a portion of the frame
period unassigned - making it temporarily available to those
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stations experiencing rain fades. Data rate control of such systems

involves transmitting or recelvlng the same number of information

bits each frame during the fade, but reducing the data rate in order

to fUlly occupy the additional allotted time. As discussed above,

this increases the transmitted energy per bit, which offsets the

loss in received power during the fade.

For data rate control to work, the ground stations must at least

have the synchronization hardware required to switch from the normal

symbol rate to a lower rate. However, to achieve performance

approaching that obtained when there are no fades, the use of

several selectable data rates is required, with little delay in the

control loop.

As with adaptive FEe coding, data rate reduction can be used to

mitigate both uplink and downlink fades. Again, on-board signal

processing essentially makes uplink data rate control independent of

downlink control, thereby making efficient use of the reserve time

and simplifying the control procedure. However, the satellite

receiver must be capable of synchronizing to several data rates,

which complicates the on-board processing hardware.

7.4.4 Simultaneous Fade Probabilities

When a resource-sharing scheme is used to provide additional

fade margin, the amount of the resource (time or frequency) that

must be set aside to provide the required margin is highly dependent

on the probability of simultaneous fades on two or more links. If

sufficient resources are reserved to back up two links, for example,

then the outage probability is the probability that the fade depth

exceeds the added margin provided, or that three or more links are

suffering fades at the same time.

The probability of simultaneous fades is also of interest in
connection with site diversity systems (paragraph 7.4.2.1). In that

case, the sites are generally assumed to be close enough to each

other to be affected by the same storm system. In the case of
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resource-sharing systems, we are concerned with fades simultaneously

occurring on links to Earth stations separated by much larger

distances as well. A naive approach would be to assume that the

rain attenuation at a given Earth station is statistically

independent of that at another station substantially removed from

the first. Closer examination reveals, however, that this is not

the case.

Acampora (19Bl), in the analysis cited earlier, observed that

the deep rain fades that are of concern are normally caused by

thunderstorm activity, and that there is a definite correlation in

thunderstorm activity at widely separated locations. In particular,

thunderstorm activity is typically restricted to the four-month

period from June through September, and to the quarter of the day

lasting from 1:00 PM to 7:00 PM local time. Because of this, the

occurrence of a deep fade at one site makes the probability of a

deep fade at the same time at a second site much higher than the

yearly average. The observation of the fade at the first site makes

it highly probable that we are in the June-September, 1:00 PM - 7:00

PM thunderstorm period, therefore the chances of a thunderstorm at

the second site are higher than average by a factor of at least

(12/4)(24/6), or 12, using the broad ranges of time given. In

addition to this yearly-to-thunderstorm-period factor, 0, a second

factor p, accounts for the additional correlation of deep fades

between sites that are spaced closely enough that they are affected

by the same storm systems. This factor was considered by Acampora

to range from 1, which implies independence of fades during the

thunderstorm period, to a maximum value of 6. The factors 0 and p
are applied as follows: The yearly average joint probability of the

attenuation (AI and A2) two sites exceeding their respective

thresholds (TI and T2) is given by
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where the last two quantities are the individual yearly exceedance

probabilities for the two sites. For Tl = T2, the factor ap is seen

to be the diversity improvement defined in Section 7.4.1.
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canting angle, 4-29, 4-37
CCIR (International Radio Consultative Committee), 5-1, 7-9
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format, 5-5
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Data rate reduction, 7-80, 7-120
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tropospheric, 6-5
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analysis, 7-58
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11.7 GHz
19 GHz, 5-36
28 GHz, 5-36
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hail and snow, 4-6, 6-120
hydrometeor, 4-4, 6-104
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measurements, 6-115
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mUltipath, 4-4, 6-120
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prediction, 6-104
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elevation angle dependence, 4-45, 6-113
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frequency dependence, scaling, 4-45, 6-111
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rate of change, 4-44
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theory, 4-23
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snow, 6-120
sources, 6-104
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introduction, 7-36
path performance, 7-37
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Diversity
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measures of performance, 7-80
orbit, 7-79, 7-84, 7-107
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measurements, 7-109
path, see site
signal 7-111
site, 7-79, 7-86

definition, 7-80
design factors, 7-88
empirical models, 7-93, 7-95, 7-102, 7-107
experiments, 7-86

space, 7-83
Diversity advantage, 7-81
Diversity improvement, 7-80
Diversity gain

analytic model, 7-102
definition, 7-80
empirical model, 7-93
empirical model extension, 7-95
relative, 7-107

Drop size distribution, 2-7
DSCS III satellite, 7-30
Dust attenuation, 6-73
Dutton-Dougherty rain attenuation model, 3-2, 3-12
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ECS satellite, 5-3, 5-4
Effective path length

attenuation model comparisons, 3-70
definition, 3-63
frequency dependence, 3-64

Elevation angle scaling
depolarization, 6-113
rain attenuation, 6-48

Elliptical polarization, 4-11
ETS-II satellite, 5-3, 5-4, 5-19, 5-24, 5-35
European Broadcasting Union, 7-32

-F­
Fade

distribution function, 6-95
mitigation, 7-78
simultaneous probabilities, 7-121
temporal distribution, 5-28

Fade duration, 5-32, 6-50
annual distribution, 5-35, 6-56
daily distribution, 6-56
versus frequency of occurrence, 6-50

Federal communications Commission (FCC), 6-2
FLTSATCOM satellite, 7-30
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amplitude, 6-76, 6-101
antenna aperature effects, 6-75
computation of

amplitude, 6-101
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angle-of-arrival, 6-103
gain reduction, 6-103
RMS phase delay, 6-103

distribution function, 6-95
example, 6-101
gain degradation, 6-98
overview of amplitude, 6-76
phase, 6-90
phase delay, 6-90
phase ripple, 6-92
phase ripple gain degradation, 6-94
power spectral density of amplitude, 6-82
variance of signal amplitude, 6-76

Fog
attenuation, 6-71
attenuation prediction model, 6-72
visibility
water content, 6-71

Forward error correction (FEC) , 7-28, 7-118
adaptive, 7-79, 7-117

Free space path loss, 7-52
Frequency bands, 6-2
Frequency diversity, 7-79, 7-119
Frequency reuse, 4-1, 5-36
Frequency scaling

for polarization, 6-111
for rain attenuation, 5-25, 6-47

-G-
Gain degradation, 6-82

design information, 6-95
domains, 6-98
sample computation, 6-101

Gaseous attenuation
elevation angle dependence, 6-12
estimation procedure, 6-12
frequency dependence, 6-7
ground station altitude dependence, 6-8
prediction, 6-6
sample calculation, 6-16
sources, 6-6
standard deviation, 6-9
surface temperature dependence, 6-12
water vapor dependence, 6-8

Global rain attenuation model, 1-7, 3-2, 3-17, 6-23
sample calculation, 6-29

-H-
Hourly Precipitation Data Report, 2-16
Hydrometeors, 4-4

-1-

I-5



Ice, meteorological presence, 4-47
Ice depolarization (see: Depolarization, ice crystal)
INTELSAT VI satellite, 7-19, 7-29
Intense rain events

annual and daily distributions, 6-56
Interference, 6-75
International Radio Consultative Committee: see CCIR
International Telecommunications Union (ITU), 6-2
Ionospheric effects, 6-5
Isolation, 4-4, 4-17
Isotherm, oOC, 2-4, 3-26, 3-38
ITALSAT satellite, 7-33

-J-
Joss drop size distributions, 2-7

-K-
Laws and Parsons drop size distribution, 2-7
Lin rain attenuation model, 3-2, 3-54
Local Climatological Data Report, 2-17
Low-angle fading, 6-85

selected experimental results, 6-85
Low-angle scintillation, 6-82

-M-
Marshall-Palmer drop size distribution, 2-7
Model,

CCIR, rain attenuation, 3-2, 3-44, 6-32
CCIR, depolarization, 4-36, 5-33
Dutton-Dougherty, 3-2, 3-12
Global, 1-7, 3-2, 3-17, 6-23
ice depolarization, 4-49
Lin, 3-2, 3-54
piecewise uniform, 3-59
rain rate, 3-1
rain depolarization, 4-23
Rice-Holmberg, 3-2, 3-5
SAM (Simple Attenuation Model), 3-2, 3-58
two-component, 3-2, 3-39

Multipath depolarization, 6-120

-N-
National Climatic Data Center, 2-16
Noise (see also: Sky noise)

cloud, 6-64
sky, 1-4, 6-130
temperature, 1-4
uplink, 6-143

Non-ideal antenna, 4-15
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OLYMPUS-1 satellite, 7-31, 7-34
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On-board processing, 7-20, 7-25, 7-34
Orbit diversity, 7-79, 7-84, 7-107

measurements, 7-109
OTS satellite, 5-3, 5-4, 5-18, 5-20
outage

duration, 7-8
period, 3-4
time 7-49

Oxygen absorption, 1-3

-P-
Partial pressure, saturated, 6-16
Path diversity (see: site diversity)
Performance criteria, 7-7, 7-15

analog transmission, 7-12
digital transmission, 7-9
examples, 7-44, 7-53, 7-68

Phase dispersion data, 5-39
Phase fluctuations, 6-90, 6-103, 6-129, 6-131
Piecewise uniform rain rate model, 3-59
Polarization isolation, 4-2
Polarizastion mismatch factor, 4-10
Polarization states, 4-7
Power bUdget equation, 7-53
Power control, 7-79, 7-112

downlink, 7-115
uplink, 7-114

Power spectral density, 6-82
Prediction

amplitude fluctuations, 6-76
angle of arrival, 6-94
depolarization, 6-104, 6-122

CC1R approximation for rain, 6-106
CC1R factor for ice, 6-119

fog, 6-72
gaseous attenuation, 6-6, 6-11
gain degradation, 6-82, 6-103
introduction, 6-1
phase delay, 6-90
power spectral density, 6-82
rain attenuation, 6-20

CC1R model, 6-32
Global model, 6-23

Propagation beacons
ACTS, 7-26
1talsat, 7-33
Olympus, 7-32
summary table, 5-3

Propagation data, 5-1
11.5 - 11.7 GHz, 5-8
15 - 16 GHz, 5-18
19 - 20 GHz, 5-22
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28 - 35 GHz, 5-22
format, 5-5
phase and amplitude dispersion, 5-39
satellites used, 5-4
summaries, 5-1
temporal fade distribution, 5-28

-R­
Rain

convective, 2-2
debris, 3-42
depolarization (see: Depolarization, rain)
gauges, 2-23
gauge integrtation time, 2-31
spatial distribution, 2-2
specific attenuation
stratiform, 2-2
volume cell, 3-41

Rain attenuation, 1-6, 3-1
measurements (see: Propagation data)
models summary, 3-2
model comparisons, 3-61
statistics: see Attenuation statistics
prediction: see Prediction, rain attenuation

Rain fade mitigation, 7-78
Rain rate

climate regions
CCIR, 3-45, 6-38
Global, 3-21, 6-24

cumulative distribution, 3-3, 6-26, 6-34
estimation from rain gauge records, 2-25, 2-28
long term distributions, 2-3
measurement, 2-23
models, 3-2
path averaged, 3-29, 3-53, 3-55, 3-59
point, 3-1, 3-15, 3-18
short term distributions, 2-4
statistics, 2-1, 3-3
time variation, 2-25, 3-4, 5-28, 5-32

Rainfall data, sources and types
Canada, 2-26
U.S., 2-13
worldwide, 2-28

Rate of change of attenuation, 6-56
Rate reduction, 7-80, 7-112
Rayleigh scattering, 2-7
Reflectivity factor, 2-4, 6-122
Relative humidity, 6-16
Resource sharing, 7-78
Rice-Holmberg rain rate model, 3-2, 3-5
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